Molecular orientation behaviours of uniaxially stretched poly (vinyl chloride) film: 3. Effect of molecular orientation on anisotropy of Young's modulus in uniaxially stretched poly(vinyl chloride) film

S. Hibi, M. Maeda and H. Kubota

Department of Fibre and Polymer Engineering Technology, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan (Received 22 December 1976)

Using uniaxially stretched, unplasticized PVC film as an example of non-crystalline polymer film, an aggregation model is assumed **consisting of a structural unit having an elastic compliance of** the same value as that of an ideal sample, uniaxial!y stretched and with **orientation of** the structural unit that conforms to that of the molecular chain axis. By using orientation factors evaluated from polarized fluorescence measurements the anisotropy of Young's modulus on the surface of the sample is investigated. The results of theoretical calculation explain **the elastic anisotropy observed.** The dependence of the anisotropy of Young's modulus on draw ratio can **be specified by** the molecular orientation regardless of the temperature, above or below the glass temperature, at which the sample was stretched.

It is well known that the short time response to an infinitesi-
mal deformation in polymer solids represents elasticity. In mal deformation in polymer solids represents elasticity. In Since the sample consists only of non-crystalline chains
crystalline polymers in particular, the basic methods for the having cylindrical symmetry about the exten crystalline polymers in particular, the basic methods for the having cylindrical symmetry about the extension axis, an
evaluation of Young's moduli have been developed by using equivalent aggregation model was used which c molecular orientation functions with respect to the main the structural unit with cylindrical symmetry about the mainly on that of crystallites¹⁻³. Elastic anisotropy of elastic compliance of the structural unit is: stretched crystalline polymer films has been evaluated by means of the orientation factors obtained by X-ray diffraction, and the results have been compared with the measured values⁴⁻⁶. values⁴⁻⁶. S_{11}^2 S_{13}^2 0 0 0 0

For non-crystalline polymers, Kashiwagi, Folkes and Ward⁷ have explained the anisotropy of the elastic modulus in poly(methyl methacrylate) in terms of the molecular orientation factors evaluated from measurements by broadline nuclear magnetic resonance. However, little work has been reported on the evaluation of the elastic anisotropy of stretched non-crystalline polymer film in terms of the molecular orientation owing to the difficulty of quantita-

chloride) (PVC) film have been evaluated by using polyene unit. and carbonyl radicals formed in the heat-treated samples Under the condition that the sample is subjected to uni-
as fluorescent radicals, and the results were found to be form stress conforming to Reuss's model, Young's m reasonably in agreement with experiment. In this paper, in the X_3 axis direction is derived in terms of the elastic uniaxially stretched PVC film was chosen as an example of compliance elements from the relation : non-crystalline polymer and its elastic anisotropy was investigated by birefringence and polarized fluorescence intensity measurements.

INTRODUCTION EVALUATION OF YOUNG'S MODULUS BY POLARIZED FLUORESCENCE

equivalent aggregation model was used which consisted of chain in a crystallite on the basis that the elasticity depends X_3^4 axis (the molecular chain axis) in the structural unit. The

molecular orientation owing to the difficulty of quantita- The coordinate system $0-X_1, X_2, X_3$ is set in the sample by tive evaluation of the molecular orientation. The making the X_3 and X_1 axes parallel to the initial draw direc-In a previous paper in this series⁸, the second and the tion and the thickness direction of the sample, and the cofourth moments of molecular orientation in poly(vinyl ordinate system $0-X_1^u$, X_2^u , X_3^u is fixed in a reference structural

form stress conforming to Reuss's model, Young's modulus

$$
E_{33}^{-1} = \langle a_{3i} a_{3j} a_{3k} a_{3l} \rangle S_{ijkl}^{u}
$$
 (2)

where the elastic compliance element S^{u}_{ijkl} corresponds to S^{u}_{pq} in engineering notation, and a_{ij} is the direction cosine between the X_i and X_i^u axes (the angular brackets denote the space average of the structural units). Similarly, Young's modulus in an arbitrary direction on the surface of the film (the X'_{3} direction, say) is given by:

$$
E_{3'3'}^{-1} = \langle a'_{3'}a'_{3'}a'_{3'}a'_{3'}b''_{1'}b''_{1'} \rangle
$$
 (3)

where a'_{3k} is the direction cosine between the X'_3 and X''_k axes. If m_{3j} is the direction cosine between the X'_{3} and X_{j} axes, the value of a'_{3k} is:

$$
a'_{3k} = m_{3p} a_{pk} \quad (m_{3l} = 0)
$$

Substituting each element of equation (1) into equation (3) and modifying the average $\langle a'_{3}a'_{3}a'_{3}a'_{3}a'_{3}a'_{3}b \rangle$ by the additive theory of Legendre functions, we arrive $a\bar{t}^3$:

$$
[E(\beta)]^{-1} = \frac{1}{35} \left\{ 8F_{400}P_4(\cos\beta) + 20F_{200}P_2(\cos\beta) + 7 \right\} S_{33}^u + \frac{1}{21} P_2(\cos\beta)P_4(\cos\Theta_2)F_{400} + \frac{2}{105} P_4(\cos\Theta_2)F_{400}
$$

+ $\frac{8}{105} \left\{ 3F_{400}P_4(\cos\beta) - 10F_{200}P_2(\cos\beta) + 7 \right\} S_{11}^u + \frac{1}{21} P_2(\cos\Theta_2)F_{200} + \frac{1}{15} \right\}$ (10)
+ $\frac{2}{21} \left\{ -12F_{400}P_4(\cos\beta) + 5F_{200}P_2(\cos\beta) + 7 \right\} \times$ where *k* is a constant relating to the apparatus, and constants formed in the sample. Because the fluorescence intensity is obtained through polyene and carbonyl radicals formed in the smallest potential phase.

axes and F_{100} $(l = 2, 4)$ are the second and the fourth orien-
tation feature of the malacular chain V^u axis) about the *Y* the main chain axis. tation factors of the molecular chain (X^4_3 axis) about the X_3 axis. The polarized fluorescence method, including the practical axis.

for polarizer and analyser being parallel (denoted by ||) and in the previous paper to evaluate the second and the fourth
normal (denoted by 1) the orientation factors F_{min} orientation factors: $\Theta_1 = 20^\circ$, $\Theta_2 = 9$ normal (denoted by 1), the orientation factors F_{200} and F₄₀₀ can be evaluated by the following equations³: fore, if all the elastic compliance elements S_{pq}^{μ} are known,

$$
F_{200} = \frac{(n+1)(3y - 4x + 3)}{[nP_2(\cos \Theta_1) + P_2(\cos \Theta_2)] (8x + 12y + 3)}
$$
(5)

$$
F_{400} = \frac{3(n+1)(x-6y+1)}{[nP_4(\cos\Theta_1) + P_4(\cos\Theta_2)] (8x+12y+3)}
$$
 (6)

$$
x = I_{\parallel}(90^{\circ})/I_{\parallel}(0^{\circ})
$$
 (7)

$$
y = I_1(0^{\circ}) / I_0(0^{\circ})
$$
 (8)

The notations (0°) and (90°) in equations (7) and (8) desig-intensity, and then uniaxially stretched at a constant rate ponding to the two cases in which the extension direction, conditions. The draw temperature was 65° and 110° C - X_3 axis, of the sample is parallel with, or perpendicular to, below and above the glass temperature $(T_g = 85^{\circ}C)$ - and

The fluorescence intensities $I_{\parallel}(\beta)$ and $I_{\perp}(\beta)$, in which the 10 cm wide. X_3 axis makes an arbitrary angle β with the polarizer, are theoretically derived from:

$$
I_{\parallel}(\beta) = \frac{k}{35} \left[n \{ 8P_4(\cos \beta) P_4(\cos \Theta_1) F_{400} + 20P_2(\cos \beta) P_2(\cos \Theta_1) F_{200} + 7 \} \right]
$$

+
$$
\frac{8P_4(\cos \beta)P_4(\cos \Theta_2)F_{400}}{P_2(\cos \beta)P_2(\cos \Theta_2)F_{200} + 7}
$$
 (9)

\n (the
$$
X_3
$$
 direction, say) is given by:\n $E_{3'3'}^{-1} = \langle a'_{3}a'_{3}a'_{3}a'_{3}a'_{3}b \rangle S_{ijkl}^{u}$ \n

\n\n (3) \n $I_1(\beta) = k \left[n \left\{ -\frac{8}{35} P_4(\cos \beta) P_4(\cos \theta_1) F_{400} + \frac{2}{35} P_4(\cos \theta_1) F_{400} + \frac{1}{21} P_2(\cos \theta_1) F_{400} + \frac{1}{21} P_2(\cos \theta_1) F_{400} + \frac{1}{21} P_2(\cos \theta_1) F_{200} + \frac{1}{15} \right]$ \n

\n\n Substituting each element of equation (1) into equation\n (3) and modifying the average $\langle a'_{3}a'_{3}a'_{3}a'_{3}a'_{3}b'_{3}b \rangle$ by the additive\n (Hecry of Legendre functions, we arrive at²:\n
$$
[E(\beta)]^{-1} = \frac{1}{35} \left\{ 8F_{400}P_4(\cos \beta) + 20F_{200}P_2(\cos \beta) + 7 \right\} S_{33}^{u} + \frac{1}{21} P_2(\cos \beta) P_4(\cos \theta_2) F_{400} + \frac{2}{105} P_4(\cos \theta_2) F_{400} + \frac{8}{105} \left\{ 3F_{400}P_4(\cos \beta) - 10F_{200}P_2(\cos \beta) + 7 \right\} S_{11}^{u} + \frac{1}{21} P_2(\cos \
$$

where k is a constant relating to the apparatus, and constants Θ_1 , Θ_2 and *n* are concerned with the fluorescent radicals formed in the sample. Because the fluorescence intensity is obtained through polyene and carbonyl radicals formed in the sample, the constants relevant to the fluorescent radicals In the above equation, β is the angle between the X'_3 and X_3 are as follows: n is the ratio of polyene to carbonyl, and Θ_1
and Θ_2 are the contact angles of the fluorescent radicals to

When the fluorescence intensity pattern is measured both use of equations (5) , (6) , (9) and (10) , was verified and used
colorizer and analyser being parallel (denoted by β) and in the previous paper⁸ to evalu we can calculate Young's modulus in the arbitrary direction of angle β with the draw direction in the film, by substituting the evaluated F_{200} and F_{400} into equation (4) as will be described later.

PREPARATION OF SAMPLE

PVC film $(P_n = 1300)$ was produced by the T-die method and used for initial stretching after assuring that it was in the non-oriented state by the birefringence method. The) film was heat-treated at $150^{\circ} \pm 1^{\circ}$ C for 30 min in a constant temperature chamber in order to increase its fluorescence nate the principal values of the fluorescence intensity corres- of 10%/min to specified extension ratios under the following the polarizer, the film was cut in the shape of a dumb-beU 15 cm long and

METHOD OF MEASUREMENT

Birefringence

The value of birefringence was derived from the retardation with a polarizing microscope (Nihon-Kogaku PX-OH-2) equipped with a Berek compensator.

x 10¹⁰ dyne/cm² being estimated by extrapolation at $F_{200} = 1$

FOM-1). These curves with the measured values leads to $n = 2.0$.

Young's modulus

Test pieces 35 mm long, $0.5-1.0$ mm wide and $0.1-$ 0.2 mm thick were cut in all directions of 15[°] between β = 0° and 90[°], and then measured at 23[°] \pm 1[°]C and 110 Hz with a Vibron DDV-II (Toyo Measuring Instrument Co.). **8**

$STRUCTURAL UNIT$ $^{8}_{8}$ $^{6}_{9}$

ESTIMATION OF ELASTIC COMPLIANCES IN

STRUCTURAL UNIT

The elastic compliance is assumed to be the same as that of

a perfectly uniaxially stretched sample and the value of the

compliance is supposed to be kept constant The elastic compliance is assumed to be the same as that of a perfectly uniaxially stretched sample and the value of the compliance is supposed to be kept constant during the uniaxial stretching process at different draw temperatures. Furthermore, it is postulated that the orientation of the $\frac{1}{2}$ structural unit conforms to that of the molecular chain axis.

The compliance elements of the structural unit shown in equation (1) are determined as follows. Young's moduli in the initial draw direction (draw ratio 2.5 to 4.0) were first $\begin{array}{ccc} \n\mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \n\mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \n\mathbf{D} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \n\mathbf{D} & \mathbf{C} & \mathbf{C} & \mathbf$ plotted as shown in *Figure I* against the orientation factor F_{200} , and the elastic compliance element $S_{33}^{\prime\prime}$ was estimated Draw ratio as the reciprocal of the extrapolated value at $F_{200} = 1.0$. *Figure 2* Change of birefringence with draw ratio; A (affine) and Similarly the reciprocal of the extrapolated Young's modu-
B (affine + Langevin) are calcula Similarly, the reciprocal of the extrapolated Young's modu-
lus in the transverse direction was taken as S⁴. Since the **some indicated in this Figure.** •, Draw temperature 65^oC, annealed temlus in the transverse direction was taken as S_{11}^u . Since the indicated in this Figure. \bullet , Draw temperature 65°C, annealed temperature contains the value of \mathbb{C}^u , \mathbb{C}^u , \mathbb{C}^u , annealed temperature samples used were too thin to determine the value of S_{AA}^U by direct measurement, the following indirect method was α , draw temperature 110°C, annealed temperature 150°C

 $= \epsilon (2S_{12}^u + S_{66}^u) = 2\epsilon S_{11}^u$ is true for the structural unit with cylindrical symmetry about the X_3^u axis. The value of $(2S_{13}^{\mu} + S_{44}^{\mu})$ was therefore evaluated from S_{11}^{μ} after determining the values of ϵ and S_{13}^4 . The values of S_{12}^4 and S_{13}^4 $\overline{10}$ were calculated on the assumption that Poisson's ratios \overline{v}_{12} and v_{13} are equal to 0.46 by referring to the values presented by Hennig⁹, and the value of ϵ was determined experimentally as will be shown later.

Figure 2 shows the experimental results for birefringence, and the curves (A and B) derived from the calculation described in the first paper of this series: curve A conforms to the affine deformation of a rigid molecular chain and curve B follows from the mixture of rigid molecular chain and Langevin chain proposed by Roe and Krigbaum¹⁰. Good agreement between the curves and the points shows that the assumption regarding the molecular orientation function and the characteristic parameters may be acceptable. The parameters used for this sample are as follows: the segment number in the Langevin chain is 10 and the ratio of rigid chain to Langevin chain is 70: 30.

It is evident from this Figure that samples drawn above 0.6 0.7 0.8 0.9 I.O and below the glass temperature have different molecular orientations for the same draw ratio, and comparison of orientations for the same draw ratio, and comparison of the results of the samples annealed at 120° C with those *Figure 1* Method of estimation of E_{33}^2 in the structural unit, 11.2 annealed at 150° C shows that the effect of heat treatment cannot be appreciable.

The determination of the ratio n (polyene to carbonyl) is carried out as shown in *Figure 3.* The fluorescence intensity *Polarized fluorescence intensity* r^2 **ratio** $I_1(90^\circ)I_1(0^\circ)$ is taken as the ordinate and curves, cal-The measurement was performed by the reflection culated from equation (9) for different value of the parameter method with a polarized fluorometer (Nihon-Bunko n using the postulated orientation factors. Comparison of

120 $^{\circ}$ C; \Box , draw temperature 65 $^{\circ}$ C, annealed temperature 150 $^{\circ}$ C;

fied value of *n* and the one having $n = 2.0$ is the best fit. A, $n = 1.0$; graphs, support this conclusion.
B, $n = 1.5$; C, $n = 2.0$; D, $n = 2.5$; E, $n = 3.0$ Values of draw ratio of samp

and the transverse direction with draw ratio for the samples drawn below $\mathcal{T}_{g}: --- -$, calculated with parameter ϵ ; \bullet , E_{\parallel} ; \circ , E_{\perp} . A, ϵ = 1.0; B, ϵ = 1.2; C, ϵ = 1.4 $\frac{5}{6}$ 2

Figure 4 Change in Young's modulus in the initial draw direction

and the transverse direction with draw ratio for the samples drawn

below $T_g: - - -$, calculated with parameter ϵ ; \bullet , E_{\parallel} ; \circ , E_{\perp} .

A, $\$ F_{400} from equations (5), (6), (7) and (8) by using the measured fluorescence intensity at an arbitrary extension of the

In *Figure 4* the plotted points are measured values of Young's modulus in the initial stretch direction and in the transverse direction for the film drawn at 65°C; the broken the elastic compliance parameter ϵ and F_{100} into equation angle β
(4). According to the theory of Hill¹¹, the calculated Young's circus 5. Actionary of Young's partitu (4). According to the theory of Hill , the calculated Young's *Figure 5* Anisotropy of Young's modulus for the samples drawn
modulus using the assumption of uniform stress field should not be larger than that of the true value, the value of $\epsilon = 1.2$ lated values. (a) *DR* 2.3; (b) *DR* 1.7; (c) *DR* 3.2; (d) *DR* 2.6

for the calculation of Young's modulus.

The values of the elastic compliance elements are tabulated together with Hennig's results, in *Table 1.* The value difference in the state of the film; the sample in our calcula- \sim \sim \sim \sim tion is a perfectly drawn sample contrary to Hennig's case where the sample was stretched by 150%. In the calculation of the curves denoted by broken lines in *Figures* 5 to 7, o the evaluated numerical values listed in *Table 1* are used in \overline{B} equation (4), Taking into account Hill's restriction, we see from *Figures 4* to 7 that the calculated curve adequately \overline{C} \overline{C} \overline{C} explains the dependence of the measured Young's modulus
O2. on the change in draw ratio and measuring direction.

Since the structural unit has been assumed to be inde. pendent of draw ratio and draw temperature, it appears from equation (4) that the draw ratio dependence of Young's $\frac{3}{1000}$ 3 4 5 modulus and its anisotropy may be defined by the degree of $\frac{3}{1000}$. molecular orientation alone. The result shown in *Figures 8 Figure 3* Estimation of value of n; A-E are calculated with speci- and 9, which were derived as described in the following para-

Values of draw ratio of samples drawn at 65 $^{\circ}$ and 110 $^{\circ}$ C, with the same birefringence value, were selected from *Figure 2;* for example, a draw ratio of 1.7 for the sample drawn at 65° C is equivalent to 2.2 for the one drawn at 110° C. Each measured value of Young's modulus, corresponding to the equivalent draw ratio is picked out and then *6 i~ ,,sSS.B..* replotted in *Figure 8* by taking the values for draw tempera-

Table 1 Numerical values of elastic compliance elements estimated in this paper, and the values proposed by Hennig⁵

'ዔ	Compliance, S_{ii}^{\prime} (cm ² /dyne)	This paper	Hennig
$\frac{1}{\sqrt{2(1-x^2)}} = \frac{1}{\sqrt{2(1-x^2)}} = \frac{1}{\sqrt{2(1-x$		0.89×10^{-11}	2.0×10^{-11}
		4.01 x	$3.7 \times$
		10.44 x	$7.1 \times$
	S_{33}^{43} S_{44}^{42} S_{12}^{44} S_{23}^{42}	$-1.84x$	$-1.7x$
		$-0.41 x$	$-0.93 \times$

below T_a up to different draw ratios, the broken lines being calcu-

Figure 6 Change in Young's modulus parallel with and perpendicular to the initial draw direction with draw ratio for the samples drawn above T_q . A, E_{\parallel} ; B, E_{\perp} ; $- - -$, calculated (affine, Langevin)

Figure 7 The anisotropy of Young's modulus for the samples drawn above *T_g*. (a) *DR* 2.2; (b) *DR* 1.7; (c) *DR* 3.2; (d) *DR* 2.7

Angle β

ag's modulus for the samples
 β ag's modulus for the samples
 β and 1.7; (c) DR 3.2; (d) DR 2.7
 β and β an ture 65° C as abscissa and those for 110° C as ordinate. The result shows that each point lies on the bisector. If we plot the Young's moduli in the directions $\beta = 0^\circ$ and 90° β against the change of birefringence value for the two samples, the points lie on the corresponding two curves as shown in *Figure 9* independent of the draw temperature. Accordingly, Young's modulus of uniaxially stretched PVC film appears to be defined by the second moment of molecular orienta. tion alone and irrespective of the structural element defin-
ing the molecular crientation , rigid rod like chain or sec 0 , 2 , 4 , 6 , 8 ment in Langevin chain in our assumed orientation distribu-

However, it is apparent from equation (4) that Young's parallel with and normal to the initial draw driection, upon bire
dulus is a function of the molecular orientation through fringence. \bullet , E_{\parallel} , 65°C; \triangle , E_{\perp modulus is a function of the molecular orientation through

 F_{400} as well as F_{200} , so that the result in *Figure 9* seems to reflect the structural feature of PVC films stretched uniaxially. In these films the significant difference is so small the value of $\langle \cos^2 \Theta \rangle$ is slightly larger than that of $\langle \cos^4 \Theta \rangle$ (refer to Figure 5 in part 2^{8}) - that only the second moment appears to govern the value of Young's modulus. $\frac{5}{10}$ The result calculated from equation (4) by using F_{200} for the corresponding terms is shown in a dot-dash line in Figure 10 in order to establish this fact.

~ ~O= ~O (3- (3= *0 ° 2 Figure 8* Correlation between Young's moduli **of the samples** with

tion function.
However, it is apparent from equation (4) that Young's parallel with and normal to the initial draw driection, upon bire

Figure 10 The effect of substitution of F_{200} for F_{400} in the calculation of Young's modulus for the sample drawn below $T_{\boldsymbol{q}}$: $\frac{1}{2}$ shows the result from using F_{200} alone; $-$, indicates REFERENCES the ordinary one having $\epsilon = 1.2$ quoted from *Figure 4.* \bullet , E_{\parallel} ; \circ , E_{\perp}

An aggregation model consisting of a structural unit having 6 elastic compliance which is obtained by extrapolation to the 7 perfectly, uniaxially, stretched sample, is applicable to 12, 697 evaluate Young's modulus in uniaxially stretched PVC fdm 8 Hibi, S., Maeda, M., Kubota, H. and Miura, T. *Polymer* 1977, when orientation of the structural unit is taken to conform
to the orientation of the molecular chain axis. In addition
 $\begin{array}{ccc}\n & 18.143 \\
 & 9 \\
 & \text{Hennig, J. J. Polym. Sci. (C) 1967, 16, 2751 \\
 & 10 \\
 & \text{Roe, R. J. and Krightnum, W. R. J. Appl. Phys. 1964, 35,\n\end$ to the orientation of the molecular chain axis. In addition it is found that the orientation factors F_{200} and F_{400} evalu- 2215 ated from the results of polarized fluorescence intensity are 11 Hill, R. Jr. *Mech. Phys. Solids* 1963, 11,357

valid for this calculation. Considering the fact that the structural unit used in this mechanical model is kept con stant without relating to the draw ratio and the draw tem-
 \overrightarrow{b} be rature. Young's moduli and their anisotropy in the uni-• perature, Young's moduli and their anisotropy in the uniaxially stretched PVC film may be uniquely specified by

As pseudo-affine deformation is the prevailing factor in the molecular orientation in these samples, the difference between the second and the fourth moments, $\langle \cos^2 \Theta \rangle$ and $\langle \cos^4 \Theta \rangle$, does not become large under the experimental conditions of this work, and thus the value of Young's modulus appears to be governed by the second moment (birefringence) $\overline{3}$ alone. Although molecular interpretation of the structural
 $\overline{3}$ unit is scarcely touched upon in this paper, it is important ^{to} consider this in future studies in order to investigate the

to consider this in future studies in order to investigate the

the relationship between the nature of elastic compliance in the relationship between the nature of elastic compliance in the structural unit and the molecular configuration or conformation.

ACKNOWLEDGEMENT

Ward for valuable discussion on this paper.

- 1 Ward, I. M. *Proc. Phys. Soc.* 1962, 80, 1176
- Xao, S. R. and Hsiao, C. C. J. *Appl. Phys.* 1964, 35, 3127
3 Maeda, M., Hibi, S., Itoh, F., Nomura, S., Kawaguchi, T. a
- **3 Maeda, M., Hibi, S., Itch, F., Nomura, S., Kawaguehi, T.** and Kawai, H.J. *Polym. ScL (A-2)* 1970, 8, 1303
- **4 Hibi, S., Maeda, M., Matsubara, M., Takahashi, M. and** Shimono, N. *Kobunshi Kagaku* 1970, 27, 309
- CONCLUSIONS 5 Hibi, S., Maeda, M., Mizuno, M., Nomura, S. and Kawai, H.
	- *Sen-i Gakkaishi* 1973, 29, T-137
	- *Sen-i Gakkaishi* 1973, 29, T-152
	-
	-
	-
	-